
Discovering Cache Partitioning Optimizations for the K
Computer

Swann Perarnau, Mitsuhisa Sato

RIKEN AICS, Programming Environment Research Team
University of Tsukuba

APPLC’13, Shenzhen, China

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 1 / 35



Introduction

The K Computer

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 2 / 35



Introduction

The K architecture

Organization
6D network.
Over 700,000 processors.
→ 80,000 compute nodes.
→ 800 racks.

Compute Node
1 CPU: SPARC64VIIIfx.
8 cores.
16 GB shared memory.
6MB L2 shared cache.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 3 / 35



Introduction

The K architecture

Organization
6D network.
Over 700,000 processors.
→ 80,000 compute nodes.
→ 800 racks.

Compute Node
1 CPU: SPARC64VIIIfx.
8 cores.
16 GB shared memory.
6MB L2 shared cache.

Optimizing single node performance matters.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 3 / 35



Introduction

Cache Optimization

Locality is a critical performance factor in shared memory.

On the K Computer
Hardware cache partitioning mechanism.
→ Isolate thrashing accesses from useful data.
→ Favor data fitting in cache against others.

Implementation
Sector cache: instruction-based, only 2 sectors.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 4 / 35



Introduction

Our Work

Issues
The sector cache is hard to use :

Very low level API.
Requires good knowledge of code locality.
Finding the best partitioning is not obvious.

Our goal
Assess the applicability of the sector cache:

Design a locality analysis tool for it.
Optimize HPC applications.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 5 / 35



Introduction

Outline

1 Introduction

2 Cache partitioning on the SPARC64 VIIIfx

3 Locality Analysis by Binary Instrumentation
Identify Accesses to a Structure
Reuse Distance Measurements
Sector Cache Performance Prediction

4 Results
Multigrid Stencil
NAS Parallel Benchmarks

5 Conclusion

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 6 / 35



Cache partitioning on the SPARC64 VIIIfx

Sector Cache

Hardware Cache Partitioning
The cache can be split in two sectors.
Accesses to one sector cannot evict memory from the other.
Special instructions sxar1,sxar2 to configure/use it.

How it works
Sectors are a split of each associative set of the cache.
→ 11 available sizes.

Operation
1 Specify size of each sector
2 Use instruction to tag a load into one sector.
3 Hardware keeps track of the sizes of each sector.
4 If space is needed, eviction is an LRU inside a sector.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 7 / 35



Cache partitioning on the SPARC64 VIIIfx

Instruction Level

Instruction :

load 0x10
sxar 1
load 0x20
load 0x30
sxar2 1 1
load 0x10
load 0x20
load 0x10

Sector :

s0

s1
s0

s1
s1
s0

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 8 / 35



Cache partitioning on the SPARC64 VIIIfx

User API

Compiler Hints
Over a code region, tag an array to be in sector 1.

double myarray[NSIZE];
double otherarray[NSIZE];

void mywork(void)
{

int i;
double sum = 0;

#pragma statement cache_sector_size 1 11
#pragma statement cache_subsector_assign myarray

for(i = 2; i < NSIZE-2; i++)
{

// myarray in sector 1
sum += myarray[i-2] + myarray[i-1] +

myarray[i] + myarray[i+1] +
myarray[i+2] + otherarray[i];

}
}

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 9 / 35



Cache partitioning on the SPARC64 VIIIfx

Difficulties
Optimization must be decided at compile time.
No automatic detection of optimization points.
Impact of sector cache configuration on performance not obvious.

Our goal
Analyze structures locality.
Suggest valid sector cache configurations.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 10 / 35



Locality Analysis by Binary Instrumentation

Outline

1 Introduction

2 Cache partitioning on the SPARC64 VIIIfx

3 Locality Analysis by Binary Instrumentation
Identify Accesses to a Structure
Reuse Distance Measurements
Sector Cache Performance Prediction

4 Results
Multigrid Stencil
NAS Parallel Benchmarks

5 Conclusion

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 11 / 35



Locality Analysis by Binary Instrumentation

Overview

3 Analysis Phases
Trace and identify memory accesses to a data structure.
Measure locality of those accesses.
Predict sector cache performance.

How ?
Binary instrumentation and debugging information.
Reuse distances.
Model sectors as smaller independent caches.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 12 / 35



Locality Analysis by Binary Instrumentation Identify Accesses to a Structure

Outline

1 Introduction

2 Cache partitioning on the SPARC64 VIIIfx

3 Locality Analysis by Binary Instrumentation
Identify Accesses to a Structure
Reuse Distance Measurements
Sector Cache Performance Prediction

4 Results
Multigrid Stencil
NAS Parallel Benchmarks

5 Conclusion

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 13 / 35



Locality Analysis by Binary Instrumentation Identify Accesses to a Structure

This Step

Principle
Use debugging information to discover each data structure location.
Trace memory accesses using binary instrumentation (Pin).

Operation
User provide a structure name and scope.
Tool reads DWARF debugging information.
Location of structure is saved for runtime use.
One instrumented run traces accesses
Each access is mapped to a structure’s location.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 14 / 35



Locality Analysis by Binary Instrumentation Identify Accesses to a Structure

Structure identification

User information
Data structure name.
Scope: enclosing function or compilation unit.

Finding a structure location
DWARF contains beginning address and location expression.
Location expression is a stack automata using machine registers.
→ Save expression to use at runtime.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 15 / 35



Locality Analysis by Binary Instrumentation Identify Accesses to a Structure

Binary Instrumentation

A Pin Tool
Execute a specific code every time a memory access instruction is executed.
Only works on x86/amd64: analysis done outside of the K Computer.

Instrumentation:
Limited to either a function scope or a range of source code lines.
→ improves the speed of the instrumented run.
Logging of dynamic memory allocation function calls.

Supported types
Stack and global arrays using location expression.
Dynamic structures identified recursively (very slow).
No support for pointer function arguments.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 16 / 35



Locality Analysis by Binary Instrumentation Reuse Distance Measurements

Outline

1 Introduction

2 Cache partitioning on the SPARC64 VIIIfx

3 Locality Analysis by Binary Instrumentation
Identify Accesses to a Structure
Reuse Distance Measurements
Sector Cache Performance Prediction

4 Results
Multigrid Stencil
NAS Parallel Benchmarks

5 Conclusion

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 17 / 35



Locality Analysis by Binary Instrumentation Reuse Distance Measurements

Purpose

Goal
Understand what happens if we push a specific structure into sector 1.

How ?
Measure the locality of this structure if it was alone in the sector.

What to measure ?
Special version of reuse distance for a set of memory accesses.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 18 / 35



Locality Analysis by Binary Instrumentation Reuse Distance Measurements

Reuse Distance

Definition
For a memory access : number of unique memory locations touched after
the previous access to the same location.

Access :

load 0x10
load 0x20
load 0x30
load 0x10
load 0x20
load 0x10
load 0x30

Distance :

∞
∞
∞
2
2
1
2

D
en

si
ty

Distance

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 19 / 35



Locality Analysis by Binary Instrumentation Reuse Distance Measurements

Reuse Distance

Definition
For a memory access : number of unique memory locations touched after
the previous access to the same location.

Access :

load 0x10
load 0x20
load 0x30
load 0x10
load 0x20
load 0x10
load 0x30

Distance :

∞
∞
∞
2
2
1
2

D
en

si
ty

Distance

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 19 / 35



Locality Analysis by Binary Instrumentation Reuse Distance Measurements

Reuse Distance

Definition
For a memory access : number of unique memory locations touched after
the previous access to the same location.

Access :

load 0x10
load 0x20
load 0x30
load 0x10
load 0x20
load 0x10
load 0x30

Distance :

∞
∞
∞
2
2
1
2

D
en

si
ty

Distance

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 19 / 35



Locality Analysis by Binary Instrumentation Reuse Distance Measurements

Reuse Distance

Definition
For a memory access : number of unique memory locations touched after
the previous access to the same location.

Access :

load 0x10
load 0x20
load 0x30
load 0x10
load 0x20
load 0x10
load 0x30

Distance :

∞
∞
∞
2
2
1
2

D
en

si
ty

Distance

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 19 / 35



Locality Analysis by Binary Instrumentation Reuse Distance Measurements

Conditional Reuse Distance

For each structure s
Only consider memory reference m iff it satisfies a condition.
Two kinds of conditions here:

m is an access to s (isolated reuse).
m is not an access to s.

Implementation
Fastest sequential reuse distance algorithm.
Could be parallelized for better performance. Each CRD is saved as an
histogram per structure.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 20 / 35



Locality Analysis by Binary Instrumentation Reuse Distance Measurements

Tracing algorithm

Reuse distance algorithm
A hash map from address to timestamp.
A balanced binary tree ordered by timestamp, saving addresses.
Each node of the tree maintain a count of its left and right children.
Reuse distance is a simple tree traversal (O(logM).

Optimizations
Consider two addresses in the same cache line as the same location.
Only maintain information for the amount of addresses the cache can
contain.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 21 / 35



Locality Analysis by Binary Instrumentation Sector Cache Performance Prediction

Outline

1 Introduction

2 Cache partitioning on the SPARC64 VIIIfx

3 Locality Analysis by Binary Instrumentation
Identify Accesses to a Structure
Reuse Distance Measurements
Sector Cache Performance Prediction

4 Results
Multigrid Stencil
NAS Parallel Benchmarks

5 Conclusion

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 22 / 35



Locality Analysis by Binary Instrumentation Sector Cache Performance Prediction

Principle

Approximate cache requirements using the reuse distance histogram.

Operation
1 For each structure:
2 For each sector cache configuration:
3 Compute cache misses triggered by structure isolation.
4 Find best configuration among all.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 23 / 35



Locality Analysis by Binary Instrumentation Sector Cache Performance Prediction

Cache model

Assume a fully associative cache, perfect LRU.

Reuse distance is the number of unique locations the program accessed
between two accesses to the same location.
→ corresponds to the number of cache lines fetched from memory.
→ if more lines are fetched that the cache size, a cache miss is triggered.

For the sector cache
Modeled as two caches of specific sizes.
Only accesses inside a sector matter to predict cache misses.

For each structure
Isolated reuse histogram gives approximation of sector 1 cache misses.
Other histogram gives cache misses in sector 0.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 24 / 35



Results

Outline

1 Introduction

2 Cache partitioning on the SPARC64 VIIIfx

3 Locality Analysis by Binary Instrumentation
Identify Accesses to a Structure
Reuse Distance Measurements
Sector Cache Performance Prediction

4 Results
Multigrid Stencil
NAS Parallel Benchmarks

5 Conclusion

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 25 / 35



Results Multigrid Stencil

Experimental setup

Validation
Analyze and optimize toy application.

A single memory access pattern.
Known locality requirements.
→ Validate analysis.
Test all possible optimizations.
→ Validate optimization.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 26 / 35



Results Multigrid Stencil

Multigrid Stencil

Stencil
Sum of 9 points over 3 matrices,
written to a fourth one.
M1 4 times smaller than M2.
M2 4 times smaller than M3.
Mr is the same size as M3.

Cache Requirements
Each matrix requires only 5 of its
lines in cache.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 27 / 35



Results Multigrid Stencil

Reuse Distances

14K 28K 56K ∞

0

5 · 106

1 · 107

Distance (Num of unique cache lines touched)

C
ou

nt
M1
M2
M3

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 28 / 35



Results Multigrid Stencil

Optimization

Tool’s analysis
Our model gives us an optimal setup with M2 in sector 1 of size 7.

Version Stencil Miss Rate (%) Reduction (%)
Unoptimized 2.10 -

M2(5, 7) 1.68 20

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 29 / 35



Results Multigrid Stencil

Full search results

1 2 3 4 5 6 7 8 9 10 11

0

5

10

15

20

25

Sector Size

C
ac
he

M
is
se
s
R
ed
uc
tio

n
(%

) M1
M2
M3

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 30 / 35



Results NAS Parallel Benchmarks

Process
Similar to the toy application.
Additional code analysis for sector sharing.

Benchmark Function Isolated Variables Sector Size Miss Reduction (%) Runtime Reduction (%)
CG conj_grad p (1,11) 19 10

LU

ssor a,b,c,d

(2,10)

48 8
blts ldz,ldy,ldx,d 75 10
buts d,udx,udy,udz 18 3
jacld a,b,c,d 64 14
jacu a,b,c,d 57 6

Table: Optimization of NAS Benchmarks.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 31 / 35



Conclusion

Outline

1 Introduction

2 Cache partitioning on the SPARC64 VIIIfx

3 Locality Analysis by Binary Instrumentation
Identify Accesses to a Structure
Reuse Distance Measurements
Sector Cache Performance Prediction

4 Results
Multigrid Stencil
NAS Parallel Benchmarks

5 Conclusion

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 32 / 35



Conclusion

Summary

Tool for data structure analysis
Discover its location in virtual memory.
Trace memory access to it during a run.
Compute various types of reuse distances.

Optimizations
Limit analysis to a specific code region.
Find a good sector cache configuration for the region.
Validated on toy application and NPB.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 33 / 35



Conclusion

Future Work

Better analysis
Multiple structures in one sector.
Locality across functions.
More Dynamic partitioning.

Better toolset
Parallel analysis.
Faster instrumentation.

Better optimizations

Detect specific locality patterns (streaming).
Automate the source modification.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 34 / 35



Conclusion

Thank you for your attention !

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache APPLC’13 35 / 35


	Introduction
	Cache partitioning on the SPARC64 VIIIfx
	Locality Analysis by Binary Instrumentation
	Identify Accesses to a Structure
	Reuse Distance Measurements
	Sector Cache Performance Prediction

	Results
	Multigrid Stencil
	NAS Parallel Benchmarks

	Conclusion

